
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 9, SEPTEMBER 2016 3585

A Soft Input Decoding Algorithm for
Generalized Concatenated Codes

Jens Spinner, Jürgen Freudenberger, Member, IEEE, and Sergo Shavgulidze

Abstract— This paper proposes a soft input decoding algorithm
and a decoder architecture for generalized concatenated (GC)
codes. The GC codes are constructed from inner nested binary
Bose–Chaudhuri–Hocquenghem (BCH) codes and outer Reed–
Solomon codes. In order to enable soft input decoding for the
inner BCH block codes, a sequential stack decoding algorithm is
used. Ordinary stack decoding of binary block codes requires the
complete trellis of the code. In this paper, a representation of the
block codes based on the trellises of supercodes is proposed in
order to reduce the memory requirements for the representation
of the BCH codes. This enables an efficient hardware implemen-
tation. The results for the decoding performance of the overall
GC code are presented. Furthermore, a hardware architecture
of the GC decoder is proposed. The proposed decoder is well
suited for applications that require very low residual error rates.

Index Terms— Generalized concatenated codes, Bose-
Chaudhuri-Hocquenghem codes, Reed-Solomon code codes,
decoder architecture, soft input decoding, flash memory.

I. INTRODUCTION

ERROR correction coding (ECC) based on GC codes has
a high potential for various applications in data commu-

nication and data storage systems, e.g., for digital magnetic
storage systems [1], for non-volatile flash memories [2], and
for two-dimensional bar codes [3]. Generalized concatenated
codes are typically constructed from inner nested binary
Bose-Chaudhuri-Hocquenghem (BCH) codes and outer Reed-
Solomon (RS) codes [4]–[6]. With algebraic decoding, GC
codes have a low decoding complexity compared to long BCH
codes. Such codes are well suited for fast hardware decoding
architectures [7].

A codeword of a GC code can be considered as a matrix.
For encoding the information is stored in the matrix. In the
first encoding step the rows of the matrix are protected by
block codes (the outer codes) over the Galois field G F(2m).

Manuscript received December 21, 2015; revised May 14, 2016; accepted
June 30, 2016. Date of publication July 12, 2016; date of current version
September 14, 2016. This work was supported by the German Federal
Ministry of Research and Education (BMBF) under Grant 03FH025IX5.
Parts of this have been published in: J. Freudenberger, T. Wegmann,
and J. Spinner, "An efficient hardware implementation of sequential stack
decoding of binary block codes," IEEE 5th International Conference on
Consumer Electronics-Berlin (ICCE-Berlin), Berlin, 2015, pp. 135-138.
doi:10.1109/ICCE-Berlin.2015.7391215. The associate editor coordinating the
review of this paper and approving it for publication was L. Dolecek.

J. Spinner and J. Freudenberger are with the Institute for System Dynamics,
HTWG Konstanz, University of Applied Sciences, Konstanz 78462,
Germany (e-mail: jens.spinner@htwg-konstanz.de; juergen.freudenberger@
htwg-konstanz.de).

S. Shavgulidze is with the Faculty of Power Engineering and Telecom-
munications, Georgian Technical University, Tbilisi 0175, Georgia (e-mail:
sshavgulidze@gncc.ge).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCOMM.2016.2590428

Next each column is protected with binary codes, the inner
codes. Typically binary BCH codes are used as inner codes
and RS codes as outer codes [8]. A decoder processes the
erroneous data in multiple decoding steps. In [7] algebraic
decoding is used in each decoding step. This is adequate if the
channel provides no soft information about the transmitted or
stored bits. However, if the channel provides reliability infor-
mation, e.g. an AWGN channel, this soft information should
be exploited by the decoder. For GC codes, it is sufficient
to decode the inner codes exploiting the soft information.
In [7] a pipelined decoder architecture for GC codes was
proposed which is based on algebraic hard input decoding
of the component codes. In this work we extend this design
to soft input decoding. We propose a new decoding algorithm
and decoder architecture for GC codes.

There exist numerous soft input decoding algorithms
for binary block codes (see [5] for an overview). For
instance, reliability-based decoding algorithms like Chase
decoding [9], [10], ordered statistic decoding [11], and the
Dorsch algorithm [12]–[14], just to name a few. Such algo-
rithms can offer a performance that is similar to maximum-
likelihood (ML) decoding, but usually do not guarantee to find
the ML codeword. However, many of these methods would not
be suitable for a fast hardware implementation. Furthermore,
many channels with quantized output provide only a small
number of decision thresholds and hence only 2 or 3 bits of
soft information per code bit which is not sufficient for many
reliability-based decoding algorithms.

In this work we consider sequential stack decoding as
proposed in [15]. Sequential decoding has a low computational
complexity, if the noise level is small. This is the case for
many applications of GC codes, e.g., for error correction
coding in storage systems. Sequential decoding was originally
introduced for tree codes. In order to decode binary block
codes, the syndrome trellis is used as a representation of the
code [16]. For block codes the number of trellis states grows
exponentially with the number of redundancy bits. Hence, the
trellis based sequential decoding as proposed in [15] is only
feasible for codes with low error correcting capabilities.

The GC construction is based on nested-BCH codes where
higher levels have higher error correcting capabilities. In this
work, we propose some improvements compared to the algo-
rithm from [15]. We use the code trellis only in the first level
of the GC code for decoding the inner BCH code, i.e., for the
code with the lowest error correcting capability. For the next
levels, we exploit the partitioning of the nested-BCH codes
in order to reduce the space complexity required for repre-
senting the code. We propose a representation based on super-

0090-6778 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

3586 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 9, SEPTEMBER 2016

codes [17]. A similar method was introduced in [18] and [19]
to reduce the decoding complexity of maximum-likelihood
decoding. The concept of supercode decoding is well suited for
decoding of GC codes, because the higher levels of the nested-
BCH codes are supercodes of the lower levels. Furthermore,
we propose a sequential list-of-two decoding algorithm that
improves the residual word error rate.

The residual error rates for GC codes can be determined
analytically [4], which is important for applications where a
low probability of failure has to be guaranteed. A particu-
lar example is coding for flash memories that provide soft
information about the state of the memory cells. Tradition-
ally, a binary symmetric channel (BSC) is used as channel
model for flash memories and BCH codes are used for error
correction [20]–[22]. Recently, for NAND flash memories
concatenated codes were proposed that are constructed from
long BCH codes [23], [24]. These codes can achieve low
residual error rates, but require very long codes and hence
a long decoding latency, which might not be acceptable for
all applications of flash memories.

The performance of error correction coding can be improved
if reliability information about the state of the cell is avail-
able [25]. In this case, the channel can be considered as
binary input additive white Gaussian noise (AWGN) channel,
where the channel output is quantized using a small number
of bits [23]. In order to exploit the reliability information
soft input decoding algorithms are required. For instance, low-
density parity-check (LDPC) codes can provide stronger error
correcting performance in NAND flash memories [26]–[29].
However, LDPC codes have high residual error rates (the
error floor) and are not suitable for applications that require
very low decoder failure probabilities [2]. For instance, the
JEDEC standard for Solid-State Drive (SSD) recommends an
uncorrectable bit error rate of less than 10−15 for client appli-
cations and of less than 10−16 for enterprise solutions [30].
For some applications, block error rates less than 10−16 are
required [31]. We demonstrate that GC codes can achieve such
low residual error rates.

Note that the threshold voltage sensing operation that is
required to obtain the soft information incurs a larger energy
consumption and a latency penalty [32]. Hence, the soft
information might only be used for blocks where the decoding
without reliability information fails. We therefore propose a
decoder architecture that supports hard and soft input decod-
ing. The hard input mode provides fast decoding, whereas the
number of decoding cycles in the soft input mode increases
with the actual number of erroneous bits. This enables a trade-
off between decoding speed and hardware complexity.

In Section II, we give a brief introduction into the GC con-
struction, explaining its structure and the decoding algorithm.
Later-on we describe the stack algorithm. This algorithm
is used to decode the nested-BCH codes. In Section III,
we describe the proposed supercode decoding algorithm and
sequential list-of-two decoding. Next, we consider the GC
decoding procedure and the decoding error probability in
Section IV. Finally, an implementation of the soft decoding
of the GC codes and results for the decoding complexity are
presented.

Fig. 1. GC encoding scheme for L levels. The GC codeword matrix has
size na × nb , where na is the length of the outer codes over the Galois field
G F(2m). The binary inner codes have length nb . The grey areas represent
the redundancy that is calculated by outer and inner encoding.

II. GC CONSTRUCTION

In this section we explain the GC construction and its
parameters. A detailed discussion can be found in [4]. The
encoding process of a GC code is illustrated in Fig. 1. The GC
codeword is arranged in an nb × na matrix, where na and nb

are the lengths of the outer and inner codes, respectively. The
encoding starts with the outer codes. The rows are protected
by L Reed-Solomon codes of length na , i.e., L denotes the
number of levels. m elements of each column represent one
symbol from the Galois field G F(2m). Hence, m rows form
a codeword of an outer code A(i), i = 0 . . . , L − 1. Note that
the code rate of the outer codes increases from level to level.
The outer codes protect Lm rows of the matrix. The remaining
nb − Lm rows are used for the redundancy of the inner codes.
After the outer encoding the columns of the codeword matrix
are encoded with binary inner codes of length nb. In Fig. 1,
the grey areas indicate the redundancy parts of the codeword
matrix that are filled by outer and inner encoding. Each column
of the codeword matrix is the sum of L codewords of nested
linear BCH codes.

B(L−1) ⊂ B(L−2) ⊂ . . . ⊂ B(0) (1)

Hence, a higher level code is a sub-code of its predecessor,
where the higher levels have higher error correcting capabil-
ities, i.e., tb,L−1 ≥ tb,L−2 ≥ . . . ≥ tb,0, where tb,i is the
error correcting capability of level i . The code dimensions are

k(0)
b = Lm, k(1)

b = (L − 1)m, . . . , k(L−1)
b = m.

The codeword of the j -th column is the sum of L code-
words.

b j =
L−1∑

i=0

b(i)
j . (2)

SPINNER et al.: SOFT INPUT DECODING ALGORITHM FOR GC CODES 3587

TABLE I

PARAMETERS OF THE CODE FROM EXAMPLE 1. kb,i AND db,i ARE THE
DIMENSION AND MINIMUM HAMMING DISTANCE OF THE BINARY

INNER CODE OF LEVEL i . ka,i AND da,i ARE THE DIMENSION AND

MINIMUM HAMMING DISTANCE OF THE OUTER RS CODES

These codewords b(i)
j are formed by encoding the symbols

a j,i with the corresponding sub-code B(i), where a j,i is the
j -th symbol (m bits) of the outer code A(i). For this encoding
(L − i − 1)m zero bits are prefixed onto the symbol a j,i . Note
that the j -th column b j is a codeword of B(0), because of the
linearity of the nested codes.

Example 1: We consider a GC code that is designed for
2kbyte information blocks. For this GC code we use L = 6
levels with inner nested-BCH codes over G F(26) and outer
RS codes over G F(29). In the first level the inner code can
correct a single error and therefore six redundancy bits are
needed. Thus the number of rows is nb = 6 · 9 + 6 = 60.

All inner codes are binary BCH codes of length nb = 60,
where the code B(0) has kb,0 = 54 and minimum distance
db,0 = 3. The outer RS codes are constructed over the Galois
field G F(29). Hence, the dimension of the inner codes is
reduced by m = 9 bits with each level. The GC code is
constructed from L = 6 outer RS codes of length na = 343.
The parameters of the codes are summarized in Table I. The
code has overall dimension k = m

∑L−1
i=0 ka,i = 16596 and

length n = na · nb = 20580. The code has a code rate
R = 0.806. The design of this code will be discussed later on.

III. SEQUENTIAL STACK DECODING

The GC decoder processes level by level, where first the
inner codes and then the outer codes are decoded. In order
to enable soft input decoding of the overall GC code, a soft
input decoding algorithm for the inner codes is required. In this
section we describe sequential decoding procedures using the
stack algorithm for block codes. These decoding methods are
used to decode the binary inner codes.

A. Sequential Stack Decoding Using a Single Trellis

Firstly, we consider the sequential decoding procedure as
presented in [15]. All algorithms considered in this paper
are based on this decoding method which uses a trellis to
represent the code. Later-on, we will present improvements to
this decoding algorithm.

The stack decoding procedure uses the trellis representation.
A trellis T = (S, W) is a labeled, directed graph, where
W = {w} denotes the set of all branches in the graph and
S = {σ } is the set of all nodes. The set S is decomposed
into n + 1 disjoint subsets S = S0 ∪ S1 ∪ . . . ∪ Sn that are
called levels of the trellis. Similarly, there exists a partition of
the set W = W 1 ∪ W 2 ∪ . . . ∪ W n . A node σ ∈ St of the

level t may be connected with a node σ̃ ∈ St+1 of the level
t + 1 by one or several branches. Each branch wt is directed
from a node σ of level t − 1 to a node σ̃ of the next level t .
We assume that the end levels have only one node, namely
S0 = {σ0} and Sn = {σn}. A trellis is a compact method of
presenting all codewords of a code. Each branch of the trellis
wt is labeled by a code symbol vt (wt). Each distinct codeword
corresponds to a distinct path in the trellis, i.e., there is a
one-to-one correspondence between each codeword v in the
code and a path w in the trellis: v(w) = v1(w1), . . . , vn(wn).
We denote code sequence segments and path segments by
v[i, j] = vi , . . . , v j and w[i, j] = wi , . . . , w j , respectively.
The syndrome trellis, can be obtained using its parity-check
matrix [16]. The syndrome trellis is minimal inasmuch as this
trellis has the minimal possible number of nodes |S| among
all possible trellis representations of the same code.

The sequential decoding procedure as presented in [15] is a
stack algorithm, i.e., a stack is required to store interim results.
The stack contains code sequences of different lengths. Let vt

denote a code sequence of length t , i.e., vt = v1, . . . , vt . Each
code sequence is associated with a metric and a node σt . The
node σt is the node in the trellis that is reached if we follow the
path corresponding to the code sequence through the trellis.
The metric rates each code sequence and the stack is ordered
according to these metric values where the code sequence at
the top of the stack is the one with the largest metric value.
There exist different metrics in the literature to compare code
sequences of different length. In the following, we consider
the Fano metric which is defined as follows. Let vi be the
i -th code bit and ri the i -th received symbol for transmission
over a discrete memoryless channel. The Fano metric for a
code bit vi is defined by

M(ri |vi) = log2
p(ri |vi)

p(ri)
− B (3)

where p(ri |vi) is the channel transition probability and p(ri)
is the probability to observe ri at the channel output. The
term B is a bias term that is typically chosen to be the code
rate R [33]. The Fano metric of a code sequence vt is

M(rt |vt) =
t∑

i=1

M(ri |vi) (4)

where rt is the sequence of the first t received symbols. Note
that the Fano metric according to Equation (3) is only defined
for discrete memoryless channels (DMC). We consider the
quantized AWGN channel which is a DMC. Binary block
codes typically have no tree structure. Consequently, the
Fano metric is not necessarily the best metric for all binary
block codes. For instance, in [34] a metric with variable
bias term was proposed for linear block codes. However,
in our simulations for binary BCH codes we found that
B = R provides good results for all considered channel
conditions.

We demonstrate Algorithm 1 in the following example,
where for simplicity we assume transmission over a binary
symmetrical channel.

3588 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 9, SEPTEMBER 2016

Algorithm 1 Sequential Stack Decoding Using a Single
Trellis
Data: received word r
Result: estimated codeword v̂
sequential decoding starts in the first node σ0 of the
trellis;
calculate the metric values for v1 = 0 and v1 = 1;
insert both paths into the stack according to their metric
values;
while the top path has not approached the end node σn

do
remove the code sequence vt at the top from the stack;
if the branch vt+1 = 0 exists in the trellis for the
node σt corresponding to the top path vt then

calculate the metric
M(rt+1|vt+1) = M(rt |vt) + M(rt+1|vt+1 = 0);
insert the code sequence vt+1 = (vt , 0) into the
stack;

end
if the branch vt+1 = 1 exists in the trellis for the
node σt corresponding to the top path vt then

calculate the metric
M(rt+1|vt+1) = M(rt |vt) + M(rt+1|vt+1 = 1);
insert the code sequence vt+1 = (vt , 1) into the
stack;

end
end
return the codeword v̂ corresponding to the top path in
the final iteration;

Example 2: Consider for instance the code B =
{(0000), (1110), (1011), (0101)} with parity-check matrix

H =
(

1 1 0 1
0 1 1 1

)
.

The corresponding trellis is depicted in Fig 2a). We assume
transmission over a binary symmetrical channel with error
probability 0.1. Hence, we have

M(ri |vi) ≈
{

0.3 for ri = vi

−2.8 for ri �= vi

The following tables represent the stack for the received
sequence r = (0010).

1st i teration 2nd i teration

vt M(rt |vt)

0 0.3

1 −2.8

vt M(rt |vt)

00 0.6

01 −2.5

1 −2.8

3rd i teration 4th i teration

vt M(rt |vt)

000 −2.2

01 −2.5

1 −2.8

vt M(rt |vt)

0000 −1.9

01 −2.5

1 −2.8

Fig. 2. Trellises of the example code and of its two supercodes.
Trellis a) is a representation of the complete code, whereas the
trellises b) and c) are the representations of the supercodes.

B. Supercode Decoding for Nested-BCH Codes

In this section we first describe the supercode decoding.
Then we discuss the proposed application of supercode decod-
ing for the nested-BCH codes that are used in the GC code.
A supercode is a superset B1 of the original code B ⊂ B1.
In order to decode the original code B, two supercodes B1
and B2 have to be constructed such that B1 ∩ B2 = B. The
supercodes have fewer redundancy bits and thus fewer trellis
states. The supercodes can be constructed such that each code
has half of the original redundancy bits. This reduces the
number of states from O(2r) to O(2

r
2) in standard order

notation, where r is the number of parity bits. The concept
of supercode decoding is well suited for decoding of GC
codes, because the higher levels of the nested-BCH codes are
supercodes of the lower levels (cf. Equation (1)).

A supercode Bi of the block code B is a code containing
all codewords of B. For a linear code B with parity-check
matrix H, we can construct two supercodes B1 and B2 such

that B = B1 ∩ B2. Let H =
(

H1
H2

)
be the parity-check matrix

of the code B, this means that H1 and H2 are two sub-matrices
of H. Then the sub-matrices H1 and H2 define the supercodes
B1 and B2, respectively.

Example 3: Consider the code B from Example 5.
We obtain

H1 = (
1 1 0 1

)

⇓
B1 = {(0000), (1100), (1110), (0010),

(1011), (1001), (1011), (0101)}

SPINNER et al.: SOFT INPUT DECODING ALGORITHM FOR GC CODES 3589

and

H2 = (
0 1 1 1

)

⇓
B2 = {(0000), (1000), (0110), (1110),

(1011), (1101), (0011), (0101)},
where the underlined vectors are the codewords of the
code B. The corresponding supercode trellises are depicted in
Fig. 2b) and 2c).

Next we state the proposed sequential decoding algorithm.
Any path stored in the stack is associated with a metric value
as well as two states σt,1 and σt,2 which are the states in the
trellis for supercode B1 and B2, respectively.

We demonstrate decoding Algorithm 2 in the following
example, where we consider the same setup as in Example 5.

Example 4: The following tables represent the stack for the
received sequence r = (0010) for the proposed algorithm.

1st i teration 2nd i teration

vt M(rt |vt)

0 0.3
1 −2.8

vt M(rt |vt)

00 0.6
01 −2.5
1 −2.8

3rd i teration 4th i teration
vt M(rt |vt)

001 0.9
000 −2.2
01 −2.5
1 −2.8

vt M(rt |vt)

000 −2.2
01 −2.5
1 −2.8

5th i teration
vt M(rt |vt)

0000 −1.9
01 −2.5
1 −2.8

Note that the stack in the third iteration differs from Exam-
ple 5, because the code sequence 001 exists in both supercode
trellises but not in the actual code. This code sequence is
deleted in the next iteration, because it cannot be extended in
both supercode trellises.

As the previous example demonstrates, the time com-
plexity of the proposed algorithm may be larger than with
Algorithm 1. This results from code sequences that exist in the
super codes, but are not valid in the actual code. Nevertheless,
both algorithms result in the same codeword.

Theorem 1: Algorithm 1 and Algorithm 2 result in the same
estimated codeword.

Proof: Both algorithms differ only with respect to the
representation of the code. To prove the proposition it is
sufficient to verify that both representations are equivalent.
We first prove by induction that the estimated codeword
corresponds to a valid path in both supercode trellises,
i.e., it is a codeword in both supercodes. The base case is
the initial step where the code bits 0 and 1 are inserted in the
stack. Note that a linear code has no code bit positions with
constant values. Hence, the transitions v1 = 0 and v1 = 1
exist in both supercode trellises. For the inductive step, we
assume that a path for the code sequence vt exists in both

Algorithm 2 Sequential Stack Decoding Using Supercode
Trellises

Data: received word r
Result: estimated codeword v̂
sequential decoding starts in the nodes σ0,1 and σ0,2 of
the supercode trellises;
calculate the metric values for v1 = 0 and v1 = 1;
insert both paths into the stack according to their metric
values;
while the top path has not approached the end nodes
σn,1 and σn,2 do

remove the code sequence vt at the top from the stack;
if the branch vt+1 = 0 exists in the trellis for both
nodes σt,1 and σt,2 corresponding to the top path vt

then
calculate the metric
M(rt+1|vt+1) = M(rt |vt) + M(rt+1|vt+1 = 0);
insert the code sequence vt+1 = (vt , 0) into the
stack;

end
if the branch vt+1 = 1 exists in the trellis for both
nodes σt,1 and σt,2 corresponding to the top path vt

then
calculate the metric
M(rt+1|vt+1) = M(rt |vt) + M(rt+1|vt+1 = 1);
insert the code sequence vt+1 = (vt , 1) into the
stack;

end
end
return the codeword v̂ corresponding to the top path in
the final iteration;

supercode trellises. It follows from Algorithm 2 that this path
is only extended if the extended path exists in both supercode
trellises. This proves the claim that the estimated codeword
corresponds to a valid path in both supercode trellises. Now
note that B = B1 ∩ B2, i.e., a path is only valid in both
supercode trellises if and only if it is a valid codeword of
the code B.

Algorithm 2 reduces the space complexity required for
representing the code. We demonstrate this in the following
example.

Example 5: We consider three BCH codes from Table I.
All codes have length n = 60. In the first level, we use a
single-error correcting code. This code has 3,262 nodes in
the trellis. This code is a supercode of the BCH code of the
second level. The trellis of the second level has 159,742 nodes.
However, utilizing the trellis of the first level code, we require
only a single additional supercode trellis with 2,884 nodes to
represent the code at the second level. Finally, the code at the
third level has a trellis with 7,079,886 nodes. Using supercode
decoding, we utilize the trellises of the first and second level
and require one additional supercode trellis with 2,410 nodes
to represent the third code.

With sequential decoding the number of visited nodes in
the trellis (the number of iterations) depends on the number

3590 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 9, SEPTEMBER 2016

of transmission errors. Note that with the presented codes the
time complexity with Algorithm 2 is at most 1.75 times larger
than with Algorithm 1.

C. List-of-Two Decoding

Next, we present two techniques to improve the performance
and the complexity of Algorithm 1. Firstly, we demonstrate
that the soft input decoding can be omitted in cases where
the hard decision of the received vector corresponds to a
valid codeword. We propose a sequential list-of-two decoding
algorithm. List-of-two decoding is motivated by the fact that
Algorithm 1 is not a maximum-likelihood decoding procedure.
Hence, we may search for further codewords in order to find
better candidates than the result of Algorithm 1.

Consider an additive white Gaussian noise channel with
binary phase shift keying. A binary code symbol vt ∈ F2
is mapped to the transmission symbol xt ∈ {+1,−1} by
xt = 1−2vt . The transmitted symbol vector x is distorted by a
noise vector n such that the received sequence is r = x+n. The
noise vector n is a vector of independent identically distributed
Gaussian random variables with mean zero. Hence,

p(rt | xt = ±1) = 1√
2πσ 2

· e− (rt ∓1)2

2σ2 , (5)

where σ 2 denotes the variance of the Gaussian distribution.
For this channel, it is common practice to use the quadratic
Euclidean distance d2

E (x, r) = ∑n
t=1 |xt − rt |2 as metric,

because

arg

(
max
v∈C

P(r|v)

)
= arg

(
min
v∈C

d2
E (x, r)

)
. (6)

However, we have

d2
E (x, r) =

n∑

t=1

x2
t − 2

n∑

t=1

xtrt +
n∑

t=1

r2
t (7)

Let r̃t = sgn(rt) denote the sign, i.e., the hard decision, of rt .
Using

n∑

t=1

xtrt =
n∑

t=1

|rt | − 2
∑

t : xt �=r̃t

|rt | (8)

we obtain

d2
E (x, r) = n + 4

∑

t : xt �=r̃t

|rt | − 2
n∑

t=1

|rt | +
n∑

t=1

r2
t (9)

Note that
∑

t : xt �=r̃t
|rt | is the only term in (9) that depends

on x. Consequently, instead of minimizing the quadratic
Euclidean distance we may also minimize

∑
t : xt �=r̃t

|rt |. Note
that

∑
t : xt �=r̃t

|rt | = 0 if the vector r̃ = (r̃1, . . . , r̃n) cor-
responds to a valid codeword. Hence, in this case, r̃ is the
maximum-likelihood estimate.

Now we consider list-of-two decoding. In order to enable a
trade-off between performance and complexity, we introduce
a threshold ρ for the metric of the estimated codeword.

In Algorithm 3 we apply Algorithm 1 to decode the
inner codes at the first level, i.e., the codewords of
the code B(0), whereas we apply Algorithm 2 for the

Algorithm 3 Sequential List-of-Two Decoding
Data: received word r, threshold ρ
Result: estimated codeword v̂
if r̃ corresponds to a valid codeword then

return the codeword v̂ corresponding to r̃;
else

calculate a first estimate v1 using either Algorithm 1
or Algorithm 2;
if M(r, v1) ≥ ρ then

return the codeword v̂ = v1;
else

remove v1 from the stack;
calculate a second estimate v2 using either
Algorithm 1 or Algorithm 2;
if M(r, v1) ≥ M(r, v2) then

return v̂ = v1;
else

return v̂ = v2;
end

end
end

Fig. 3. Comparison of Algorithm 1 and Algorithm 3 with respect to the
residual word error rate (WER).

lower levels. Figure 3 presents the performance of Algorithm 1
and Algorithm 3 with respect to the residual word error
rate (WER) for transmission over the AWGN channel. The
code is a one error correcting binary BCH code of length
n = 60. This code is later-on used as inner code in the
first level of the GC code. The decoding performance and
the number of decoding iterations depend on the threshold ρ.
Figure 4 presents a comparison with respect to the number of
iterations, where we have used two different threshold values
denoted by ρ1 and ρ2, respectively. The values of ρ2 were
obtained by computer search in order to minimize the word
error rate for a given signal to noise ratio. The values of ρ1
were chosen to demonstrate that Algorithm 3 can reduce the
word error rate compared with Algorithm 1 with a similar
complexity.

SPINNER et al.: SOFT INPUT DECODING ALGORITHM FOR GC CODES 3591

Fig. 4. Comparison of Algorithm 1 and Algorithm 3 with respect to the
number of iterations.

Fig. 5. GC decoding schemes.

IV. GC DECODING AND DECODING ERROR PROBABILITY

The decoder processes level by level starting with i = 0.
Fig. 5 depicts the decoding steps. Let i be the index of the
current level. First the columns are decoded with respect to
B(i) and the information bits have to be inferred (re-image)
in order to retrieve the code symbols a j,i of A(i) where j
the column index. If all symbols of the code A(i) are inferred
the RS code can be decoded. At this point a partial decoding
result âi is available. Finally this result has to be re-encoded
using B(i). The estimated codewords of the inner code B(i) are
subtracted from the codeword matrix before the next level can
be decoded. The detailed encoding and hard input decoding
process is described in [35].

In the first level i = 0 we use soft input decoding according
to Algorithm 1. Starting with the second level, we exploit
the structure of the nested-BCH codes and use Algorithm 2,
where the code at level i − 1 can be used as supercode of
the code of level i . For the implementation, we limit the
number of decoding iterations for each inner code. If the
number of iterations exceeds a threshold a decoding failure

is declared. For the outer RS codes we employ error and
erasure decoding [36], where the decoding failures of the inner
codes are regarded as erased symbols of the RS code.

In the following, we present an analysis of the probability of
a decoding error for the GC decoder. Afterwards, we present
an example that illustrates the performance of the proposed
decoding procedure.

A. Probability of a Decoding Error

The performance of the soft input decoding of the inner
codes can be determined using Monte Carlo simulation. Let
Pb,i be the error probability for the decoding of the inner
code B(i). Furthermore, let Pe,i be the corresponding prob-
ability of a decoder failure. We bound the probability of a
decoding error with the multi-stage decoding algorithm.

Let Ti = na − ka,i be the number of redundancy symbols
for the outer RS code A(i) at the i -th level. The probability
Pa,i of a decoding error with error and erasure decoding at
the i -th level can be computed as follows [36]:

Pa,i =
Ti∑

q=0

na−q∑

t=� Ti−q
2 +1

Pq

(
na − q

t

)
Pt

b,i (1 − Pb,i)
na−q−t

+
na∑

q=Ti +1

Pq (10)

where Pq is the probability of q erasures

Pq =
(

na

q

)
Pq

e,i (1 − Pe,i)
na−q . (11)

Using the union bound, we can estimate the block error rate
PGC for the GC code, i.e., the likelihood of the event that at
least one level is in error

Pe ≤
L−1∑

i=0

Pa,i . (12)

Example 6: Consider the code from Example 1. This code
has a code rate R = 0.806 and was designed to guarantee
Pe ≤ 10−16 according to (12) for Eb

N0
≥ 4.7d B , where soft

input decoding is used in the first three levels and hard input
decoding in the remaining levels.

B. Comparison Error Correction Performance

We compare the error correction performance of the GC
code in different decoding modes with the performance of
long BCH codes with hard input decoding. As performance
measure, we use the code rate that is required to guarantee
for a given signal to noise ratio an overall word error rate less
than 10−10 or 10−16, respectively. All codes are constructed
similar to the code presented in Example 1. In particular, the
inner codes are chosen according to Table I. Whereas the error
correcting capability of the outer codes are adapted to obtain
the highest possible code rate for a given signal to noise ratio.
Note that in this example, the overall code rate of the GC code
is at most R = 0.9, because of the choice of the inner code.

Fig. 6 depicts the code rate versus the signal to noise ratio
for Pe = 10−10, whereas the results for Pe = 10−16 are

3592 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 9, SEPTEMBER 2016

Fig. 6. Code rate versus signal to noise ratio for Pe = 10−10.

Fig. 7. Code rate versus signal to noise ratio for Pe = 10−16.

presented in Fig. 7. The GC code with soft input decoding
outperforms the GC code with hard input decoding for all error
probabilities and the BCH code for code rates below 0.88.
The soft input decoding was simulated with a 3-bit quantiza-
tion. The three curves with soft input decoding use different
decoding strategies, where the soft input decoding is applied
only to the first level, first and the second level, or levels
0 to 2, respectively. The soft input decoding improves the
performance by up to 1.3 dB. For instance, the GC code with
code rate R = 0.8 achieves a block error rate less than 10−16 at
a signal to noise ratio of Eb/N0 = 4.7 dB which is only 1 dB
from the channel capacity of the quantized AWGN channel.
For Pe = 10−10, the code rate R = 0.8 is sufficient for a
signal to noise ratio Eb/N0 ≥ 4.6 dB. Note that soft input
decoding of the first and second level is sufficient for all SNR
values above Eb/N0 = 5.5d B .

V. DECODER ARCHITECTURE

In this section we propose a decoder architecture for a GC
soft input decoder. First we discuss the integration of the

Fig. 8. Block diagram of the sequential decoder.

stack algorithm as inner decoder into the implementation of
the GC decoder presented in [35]. Then the stack algorithm
implementation for supercode decoding with its subsystems is
presented and discussed.

The original hard input GC decoder implementation in [35]
uses algebraic syndrome decoding. In this implementation the
first levels of B can decode tb,0 = 1 and tb,1 = 2 errors.
Thus high error correction capabilities of the outer codes
A(0) and A(1) are required. This leads to lower code rates
and a high decoding complexity of those outer codes. On
the other hand the soft decoding complexity of the column
codes increases significantly with each code level. Hence soft
decoding is of interest for the lower levels.

Subsequently the algebraic decoding logic for the column
code remains in the implementation. Therefore it is possible to
check whether the syndrome is zero. In this case the codeword
can be assumed to be correct, i.e., neither algebraic decoding
nor sequential decoding result in a different codeword.

A. Decoding Logic

A brief system overview is depicted in Fig. 8. The system
consists of a word array of size nb and a desired width which
stores the q-ary word. Furthermore a demultiplexer selects the
currently processed bit position depending on the top path
of the stack and delivers this value to the metric calculator.
Based on the received codeword symbol ri and the previous
metric M(rt−1|vt−1) the metric module returns M(rt |vt) to
the priority queue block. To represent the supercode trellis
asynchronous ROM is used. Each word of the ROM represents
a trellis node σt,i . The data consists of two pointers for the
successor nodes vt+1 = 0 and vt+1 = 1.

Depending on the top entry of the priority queue the desired
codeword symbol is selected and the next branches for the
actual nodes σt,1 and σt,2 are loaded from the trellis ROM.
The priority queue unloads the top entry and loads the new
paths in a single clock cycle.

Each entry of the priority queue contains several elements.
The first element is the metric value. The path in the trellis,
the length of the path, and a pointer to the current node are
stored. All entries have to be ordered by the metric values
such that the top entry has the highest value.

SPINNER et al.: SOFT INPUT DECODING ALGORITHM FOR GC CODES 3593

The process of the priority queue starts with its initializa-
tion. The starting node, its initial metric value and the path
length are set. Each update cycle begins with the load phase
in which the next node pointers are loaded from the trellis
ROM. Simultaneously the next codeword symbol is loaded
based on the path length index. The next metric value can
be determined based on the code symbol and the available
branches.

With binary codes there exists at least one possible branch
and at most two branches. The resulting branches are pre-
sorted using combinatorial logic. In the following we call these
two entries the major and the minor entries, where the major
entry has the better metric value.

All priority queue elements are successively ordered in a
chain. Each element can exchange its date with its previous
or next neighbour (see Fig. 9). Furthermore each element can
decide whether it keeps its own data, take the data from its
neighbor, load the new major data or the new minor data. In
each element the metric value is compared with the new value.
The result of this comparison is signaled to its predecessor and
successor elements. If the signal of a predecessor is false and
the major metric value comparator gives a positive signal the
new major value will be stored. Likewise if an element receives
a false signal from its successor and the minor metric value
comparator signals a new metric value that is less than the
current value, the new minor data is stored. In the case that an
element receives a signal from its neighbors, space for the new
data has to be created by shifting all entries to next element.

There exist two special cases that have to be taken into
account. The first special case occurs if a node has only a
single outgoing branch. In this case the shifting of elements
has to be prevented by signalling. The second special case
occurs if the new major and the new minor elements are
designated to be inserted into the same entry register. This
case can be detected and preventing by passing this value to
the next element.

The algorithm terminates if the maximum possible path
length is reached. The stored path in the top element is the
decoded codeword. In the practical implementation an iteration
counter will terminate after a determined maximum number of
iterations. This abort can be used to mark this decoded GCC
column as a erasure symbol for the outer RS code.

In order to decode supercodes, the following extensions
have to be implemented. First for each supercode a distinct
ROM is needed which represents its trellis. The metric calcu-
lation has to take all trellis branches of each supercode into
account. Furthermore, all node pointers have to be stored in
the priority queue elements.

B. Area Comparison and Decoding Speed

In this section we present an FPGA implementation of the
proposed soft input decoder and compare it with the hard
input decoder presented in [35]. The hard input decoder uses
algebraic decoding. It consists of the syndrome calculation, the
Berlekamp–Massey algorithm (BMA), and the Chien search
module. The soft input decoder is implemented as proposed
in Section III-B. It has two limitations. First, the length of

Fig. 9. Priority queue element.

Fig. 10. Average number of iterations for the first and second level.

the priority queue is limited to 64 elements. Furthermore the
accuracy of the metric calculation is limited to 16 bits and we
use 3-bit quantization of the input symbols.

The stack algorithm has a variable execution time depend-
ing on the error pattern. This algorithm needs at least
61 cycles to traverse the entire trellis if no error occurred.
This case can be omitted by checking whether the syndrome
of a column word is zero. If no error is detected the soft
decoding can be avoided and thus only a single cycle is
needed.

Fig. 10 depicts the average number of cycles needed for the
stack algorithm. It shows the dependency between the channel
bit error rate and the computational complexity, i.e., fewer
errors lead to fewer decoding cycles. Note that the algebraic
hard-input decoder needs four cycles for the first and six cycles

3594 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 9, SEPTEMBER 2016

TABLE II

RESULTS OF AN FPGA SYNTHESIS

for the second level. Hence, for high signal to noise ratios the
stack algorithm requires an average number of cycles that is
comparable with hard-input decoding.

Next we present FPGA synthesis result for the stack algo-
rithm. The synthesis was performed with Xilinx Vivado and a
Virtex-7 target device. Table II shows the number of slices
and look-up tables (LUT) of the hard input and the soft
input decoder with 3-bit quantization. From these results we
observe that the number of logic elements required for the
stack algorithm is about 82% of the number of logic gates
required for the GC hard input decoder.

VI. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this work we have presented a soft input decoder for gen-
eralized concatenated codes. We have proposed a sequential
decoding algorithm based on supercode trellises in order to
reduce the complexity of the soft input decoding compared to
ordinary trellis based decoding. This implementation improves
the error correction capability significantly compared with
hard input decoding. Consequently, the proposed method is
a promising approach for soft input decoding of GC codes.
The implementation of the stack algorithm is nine times large
than the algebraic decoder. This complexity can be reduced
by moving the majority of the register entries into read
only memory. Nevertheless, the proposed soft input decoding
increases the overall complexity of the GC decoder by 82%
compared to the decoder presented in [7]. Other soft input
decoding methods for binary BCH codes may reduce the
overall decoding complexity.

The proposed coding scheme is well suited for applications
that require very low residual error rates, e.g., it might be
appropriate for flash memories that provide soft information
about the state of the memory cells. For flash memories,
various concatenated coding schemes were proposed in order
to enable soft input decoding, e.g., product codes [37] and
concatenated coding schemes based on trellis coded modula-
tion and outer BCH oder RS codes [31], [38], [39]. For the
presented simulation results we assumed a quantized additive
white Gaussian noise channel. For practical flash memories,
this model is not accurate. With multi-level cell and triple-
level cell technologies, the reliability of the bit levels and
cells varies and coding schemes were proposed that take these
error characteristics into account [40]–[43]. We believe that

the adaptation of the proposed GC coding scheme for flash
memories is a promising direction for further research.

REFERENCES

[1] A. Fahrner, H. Griesser, R. Klarer, and V. V. Zyablov, “Low-complexity
GEL codes for digital magnetic storage systems,” IEEE Trans. Magn.,
vol. 40, no. 4, pp. 3093–3095, Jul. 2004.

[2] J. Freudenberger, U. Kaiser, and J. Spinner, “Concatenated code con-
structions for error correction in non-volatile memories,” in Proc. Int.
Symp. Signals, Syst., Electron. (ISSSE), Potsdam, Germany, Oct. 2012,
pp. 1–6.

[3] J. Freudenberger, J. Spinner, and S. Shavgulidze, “Generalized con-
catenated codes for correcting two-dimensional clusters of errors and
independent errors,” in Proc. Int. Conf. Commun. Signal Process. (CSP),
Barcelona, Spain, Feb. 2014, pp. 1–5.

[4] I. Dumer, “Concatenated codes their multilevel generalizations,” in
Handbook of Coding Theory, vol. 2. Amsterdam, The Netherlands:
Elsevier, 1998.

[5] M. Bossert, Channel Coding for Telecommunications. New York, NY,
USA: Wiley, 1999.

[6] V. Zyablov, S. Shavgulidze, and M. Bossert, “An introduction to gen-
eralized concatenated codes,” Eur. Trans. Telecommun., vol. 10, no. 6,
pp. 609–622, 1999.

[7] J. Spinner and J. Freudenberger, “Decoder architecture for gener-
alised concatenated codes,” IET Circuits, Devices Syst., vol. 9, no. 5,
pp. 328–335, 2015.

[8] A. Neubauer, J. Freudenberger, and V. Kühn, Coding Theory: Algo-
rithms, Architectures and Applications. New York, NY, USA: Wiley,
2007.

[9] D. Chase, “Class of algorithms for decoding block codes with channel
measurement information,” IEEE Trans. Inf. Theory, vol. 18, no. 1,
pp. 170–182, Jan. 1972.

[10] C. Argon, S. W. McLaughlin, and T. Souvignier, “Iterative application
of the Chase algorithm on Reed–Solomon product codes,” in Proc. IEEE
ICC, Jun. 2001, pp. 320–324.

[11] M. P. C. Fossorier and S. Lin, “Soft-decision decoding of linear block
codes based on ordered statistics,” IEEE Trans. Inf. Theory, vol. IT-41,
no. 5, pp. 1379–1396, Sep. 1995.

[12] B. Dorsch, “A decoding algorithm for binary block codes and J -ary
output channels (corresp.),” IEEE Trans. Inf. Theory, vol. 20, no. 3,
pp. 391–394, May 1974.

[13] M. Tomlinson, C. Tjhai, and M. Ambroze, “Extending the Dorsch
decoder towards achieving maximum-likelihood decoding for linear
codes,” IET Commun., vol. 1, no. 3, pp. 479–488, Jun. 2007.

[14] A. Gortan, R. P. Jasinski, W. Godoy, and V. A. Pedroni, “Achieving
near-MLD performance with soft information-set decoders implemented
in FPGAs,” in Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS),
Dec. 2010, pp. 312–315.

[15] L. E. Hguado and P. G. Farrell, “On hybrid stack decoding algorithms
for block codes,” IEEE Trans. Inf. Theory, vol. 44, no. 1, pp. 398–409,
Jan. 1998.

[16] J. Wolf, “Efficient maximum likelihood decoding of linear block codes
using a trellis,” IEEE Trans. Inf. Theory, vol. 24, no. 1, pp. 76–80,
Jan. 1978.

[17] J. Freudenberger, T. Wegmann, and J. Spinner, “An efficient hardware
implementation of sequential stack decoding of binary block codes,”
in Proc. IEEE 5th Int. Conf. Consum. Electron. (ICCE-Berlin), Berlin,
Germany, Sep. 2015, pp. 135–138.

[18] J. Freudenberger and M. Bossert, “Maximum-likelihood decoding based
on supercodes,” in Proc. 4th. Int. ITG Conf. Source Channel Coding,
Erlangen, Germany, Jan. 2004, pp. 185–190.

[19] J. Freudenberger, Bounded Distance Decoding And Decision Feedback.
Düsseldorf, Germany: VDI Verlag, 2004.

[20] X. Zhang and K. K. Parhi, “High-speed architectures for parallel long
BCH encoders,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 13, no. 7, pp. 872–877, Jul. 2005.

[21] R. Micheloni, A. Marelli, and R. Ravasio, Error Correction Codes for
Non-Volatile Memories. Rotterdam, The Netherlands: Springer, 2008.

[22] J. Freudenberger and J. Spinner, “A configurable Bose–
Chaudhuri–Hocquenghem codec architecture for flash controller
applications,” J. Circuits, Syst., Comput., vol. 23, no. 2, pp. 1–15,
Feb. 2014.

[23] S.-G. Cho, D. Kim, J. Choi, and J. Ha, “Block-wise concatenated BCH
codes for NAND flash memories,” IEEE Trans. Commun., vol. 62, no. 4,
pp. 1164–1177, Apr. 2014.

SPINNER et al.: SOFT INPUT DECODING ALGORITHM FOR GC CODES 3595

[24] D. Kim and J. Ha, “Quasi-primitive block-wise concatenated BCH codes
for NAND flash memories,” in Proc. IEEE Inf. Theory Workshop (ITW),
Nov. 2014, pp. 611–615.

[25] G. Dong, N. Xie, and T. Zhang, “On the use of soft-decision error-
correction codes in NAND flash memory,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 58, no. 2, pp. 429–439, Feb. 2011.

[26] K. Zhao, W. Zhao, H. Sun, X. Zhang, N. Zheng, and T. Zhang, “LDPC-
in-SSD: Making advanced error correction codes work effectively in
solid state drives,” presented at the part 11th USENIX Conf. File
Storage Technol. (FAST). San Jose, CA, USA, 2013, pp. 243–256.
[Online]. Available: https://www.usenix.org/conference/fast13/technical-
sessions/presentation/zhao

[27] J. Wang et al., “Enhanced precision through multiple reads for LDPC
decoding in flash memories,” IEEE J. Sel. Areas Commun., vol. 32,
no. 5, pp. 880–891, May 2014.

[28] W. Lin et al., “A low power and ultra high reliability LDPC error
correction engine with digital signal processing for embedded NAND
flash controller in 40 nm COMS,” in Symp. VLSI Circuits Dig. Tech.
Papers, Jun. 2014, pp. 1–2.

[29] K. Haymaker and C. A. Kelley, “Structured bit-interleaved LDPC codes
for MLC flash memory,” IEEE J. Sel. Areas Commun., vol. 32, no. 5,
pp. 870–879, May 2014.

[30] Solid-State Drive (SSD) Requirements Endurance Test Method,
document JESD218, JEDEC Solid State Technology Association, 2010.

[31] S. Li and T. Zhang, “Improving multi-level NAND flash memory
storage reliability using concatenated BCH-TCM coding,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 10, pp. 1412–1420,
Oct. 2010.

[32] S. Qi, D. Feng, and J. Liu, “Optimal voltage signal sensing of NAND
flash memmory for LDPC code,” in Proc. IEEE Workshop Signal
Process. Syst. (SiPS), Oct. 2014, pp. 1–6.

[33] J. Massey, “Variable-length codes and the Fano metric,” IEEE Trans.
Inf. Theory, vol. 18, no. 1, pp. 196–198, Jan. 1972.

[34] V. Sorokine and F. R. Kschischang, “A sequential decoder for linear
block codes with a variable bias-term metric,” IEEE Trans. Inf. Theory,
vol. 44, no. 1, pp. 410–416, Jan. 1998.

[35] J. Spinner and J. Freudenberger, “Design and implementation of a
pipelined decoder for generalized concatenated codes format,” in Proc.
27th Symp. Integr. Circuits Syst. Design (SBCCI), Aracaju, Brazil,
Sep. 2014, pp. 1–16.

[36] L. Weiburn and J. K. Cavers, “Improved performance of Reed–Solomon
decoding with the use of pilot signals for erasure generation,” in Proc.
48th IEEE Veh. Technol. Conf. (VTC), vol. 3. May 1998, pp. 1930–1934.

[37] C. Yang, Y. Emre, and C. Chakrabarti, “Product code schemes for error
correction in MLC NAND flash memories,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 20, no. 12, pp. 2302–2314, Dec. 2012.

[38] F. Sun, S. Devarajan, K. Rose, and T. Zhang, “Design of on-chip error
correction systems for multilevel NOR and NAND flash memories,” IET
Circuits, Devices Syst., vol. 1, no. 3, pp. 241–249, Jun. 2007.

[39] J. Oh, J. Ha, J. Moon, and G. Ungerboeck, “RS-enhanced TCM for
multilevel flash memories,” IEEE Trans. Commun., vol. 61, no. 5,
pp. 1674–1683, May 2013.

[40] E. Yaakobi, J. Ma, L. Grupp, P. H. Siegel, S. Swanson, and J. K. Wolf,
“Error characterization and coding schemes for flash memories,” in Proc.
IEEE GLOBECOM Workshops, Dec. 2010, pp. 1856–1860.

[41] E. Yaakobi, L. Grupp, P. Siegel, S. Swanson, and J. K. Wolf,
“Characterization and error-correcting codes for TLC flash memories,”
in Proc. Int. Conf. Comput., Netw. Commun. (ICNC), Jan. 2012,
pp. 486–491.

[42] R. Gabrys, E. Yaakobi, and L. Dolecek, “Graded bit-error-correcting
codes with applications to flash memory,” IEEE Trans. Inf. Theory,
vol. 59, no. 4, pp. 2315–2327, Apr. 2013.

[43] R. Gabrys, F. Sala, and L. Dolecek, “Coding for unreliable flash
memory cells,” IEEE Commun. Lett., vol. 18, no. 9, pp. 1491–1494,
Sep. 2014.

Jens Spinner received the B.Sc. degree in computer
science and the M.Sc. degree in computer science
from the HTWG-Konstanz in 2009 and 2011,
respectively. He is currently pursuing the
Ph.D. degree with the Institute of System
Dynamics, HTWG Konstanz. His main research
interests are concatenated codes and coding for
non-volatile memories.

Jürgen Freudenberger (S’99–M’04) received the
Dipl-Ing. and Ph.D. degrees in electrical engi-
neering from the University of Ulm, Germany,
in 1999 and 2004, respectively.

In 2003, he joined the Daimler-Chrysler Research
Center, Ulm, where he was involved in signal
processing for automatic speech recognition. Since
2006, he has been a Professor with the Hochschule
Konstanz University of Applied Sciences, Germany,
where he is currently the Head of the Information
and Media Center. His research interests include

coding theory for communication as well as storage systems and adaptive
systems for speech processing. He has authored over 90 papers on these
subjects. He has co-authored the book entitled Coding Theory: Algorithms,
Architectures and Applications (John Wiley & Sons, 2007) with A. Neubauer
and V. Kühn.

Dr. Freudenberger is a member of the German Association for Electrical,
Electronic/Information Technologies (ITG) and received the ITG Award for
his dissertation in 2005.

Sergo Shavgulidze received the Diploma degree
with excellence in communication engineering from
the Georgian Technical University, Tbilisi, in 1980,
the Candidate of Tech. Scien. degree from the Insti-
tute for Control Problems, Moscow, in 1984, and the
Doctor of Techn. Scien. degree from the Institute
for Information Transmission Problems, Moscow, in
1991. Since 1980, he has been with the Georgian
Technical University, where he is currently a Full
Professor with the Department of Telecommunica-
tions. Since 2004, he has also been with the Geor-

gian National Communications Commission, where he is currently the Head
of the Radio Frequency Management Department. From 2007 to 2008, he
was the Associate Member on the Information and Communications Security
Panel under the NATO Science for Peace and Security Program. He headed
his country’s delegation to RA-2007, WRC-2007 and RA-2015, WRC-2015,
and was elected as the Vice-Chairman of ITU-R Study Group 5 (Terrestrial
Services) at the RA-2015. His research interests include coding theory and
communication systems with a special emphasis on (generalized) concatenated
codes, woven codes, coded continuous phase modulation, and space-time
coding. He has authored over 140 papers on these subjects. He has co-
authored the book entitled Generalized Concatenated Constructions on a Base
of Convolutional Codes (Moscow, Russia: Nauka, 1991) with V. Zyablov. On
leave from Georgian Technical University, he held different research positions
at Linköping University and Lund University in Sweden; Darmstadt Technical
University, Konstanz University of Applied Sciences, and Ulm University
in Germany; Technical University of Denmark in Lyngby, Denmark; and
Lancaster University and HW Communications Ltd., U.K.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

